HPLC METHOD FOR THE SIMULTANEOUS DETERMINATION OF SECNIDAZOLE, OMEPRAZOLE AND AMOXICILLIN MIXTURE IN PURE FORMS AND PHARMACEUTICAL FORMULATIONS

Mohamed M. Baraka*¹, Mohamed E. Elsadek¹, Arwa M. Ibrahim²

*¹Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, P. C.44 519, Zagazig, Egypt.
²Pharmacist, Ministry of health, Benghazi, Libya.

ABSTRACT
An isocratic RP-HPLC method has been developed and validated for rapid simultaneous separation and determination of mixture of secnidazole, omeprazole and amoxicillin in their pure forms and pharmaceutical preparations. The separation was carried out on ACE 5 C₁₈ (25 cm x 4.6 mm) column using a mobile phase of acetonitrile: potassium dihydrogen phosphate buffer (pH 7.5) (60:40, v/v). The flow rate was 1.5 ml/min and the detection was set at 230 nm. The proposed method was successfully applied to the estimation of the cited drugs in their dosage forms.

KEYWORDS
Secnidazole, Amoxicillin, Omeprazole, RP-HPLC and Degradation products.

INTRODUCTION
Secnidazole is chemically known as (1-(2-Methyl-5-nitroimidazol-1-yl) propan-2-ol). Secnidazole is not official in any pharmacopoeia. A nitroimidazole anti-infective. Effectiveness in the treatment of dientamoebiasis¹. Secnidazole is structurally related to the commonly used 5-nitroimidazoles metronidazole and tinidazole. These drugs share a common spectrum of activity against anaerobic micro-organisms and they appear particularly effective in the treatment of amoebiasis, giardiasis, trichomoniasis and bacterial vaginosis².
Secnidazole also shows activity against anaerobic bacteria and protozoa. It is used to eradicate Helicobacter pylori in peptic ulcer disease with other antimicrobials and proton pump inhibitors. A literature survey revealed that secnidazole has been estimated in pharmaceuticals by UV, visible spectrophotometry, and high performance liquid chromatography. Secnidazole is also used to eradicate Helicobacter pylori in peptic ulcer disease with other antimicrobials and proton pump inhibitors. A literature survey revealed that secnidazole has been estimated in pharmaceuticals by UV, visible spectrophotometry, and high performance liquid chromatography.

Omeprazole is chemically known as 5-Methoxy-2-[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfanyl] benzimidazole. It is official in both B.P. 2011 where it was determined by titration with standard solution of alkali hydroxide and determining the end-point potentiometrically, and determined by HPLC method in U.S.P. XXXII. Omeprazole is a proton pump inhibitor, used in treatment of peptic ulcer disease and NSAID-associated ulceration, in gastro-esophageal reflux disease and the Zollinger-Ellison syndrome. A survey of the literature revealed that omeprazole has been estimated in pharmaceuticals by UV-spectrophotometric methods, spectrofluorimetry, and HPLC.

Amoxicillin is chemically known as (2S,5R,6R)-6-{{(2R)-2-amino-2-(4-hydroxyphenyl)-acetyl}amino}-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0] heptane-2-carboxylic acid trihydrate. Amoxicillin is bactericidal with a moderate spectrum of antimicrobial activity including many Gram-positive and Gram-negative bacteria and some protozoa. It is used in triple therapy along with secnidazole and proton pump inhibitor in the treatment of peptic ulcer. Amoxicillin trihydrate is official in B.P. 2007, where it was determined by chromatographic system. A survey of the literature revealed that amoxicillin has been estimated in pharmaceuticals by UV-visible spectrophotometric, spectrofluorimetry, and HPLC.

MATERIALS AND METHODS

Apparatus

Beckman Coulter HPLC instrument. Consort P 400® digital PH-meter for PH adjustment.

Materials and Reagents

All solvents and reagents were of HPLC analytical grade. Secnidazole (Amoun Pharmaceutical Industries, El-Obour City, Cairo, Egypt). Omeprazole (Sigma Pharmaceutical Industries, Quesna City, Egypt). Amoxicillin trihydrate (Amoun Pharmaceutical Industries, El-Obour City, Cairo, Egypt). Fladazole® tablets labeled to contain 500 mg of secnidazole. (Amoun Pharmaceutical El-Obour City, Cairo, Egypt). Ipamox® tablets labeled to contain 500 mg of amoxicillin. (Amoun Pharmaceutical El-Obour City, Cairo, Egypt). Gastro Loc® tablets labeled to contain 20 mg of omeprazole. (Sigma Pharmaceutical Industries, Quesna City, Egypt). Acetonitrile(Merck), potassium dihydrogen phosphate(Sigma-Aldrich) and sodium hydroxide (Fisher Scientific) Buffer preparation: Dissolve 1.36g /L potassium dihydrogen phosphate in 1000ml water, adjust the PH to 7.5 ±0.05 with 10% sodium hydroxide. Mobile phase: was a freshly prepared as binary mixture of acetonitrile: potassium dihydrogen phosphate adjusted to pH 7.5 using sodium hydroxide (60:40, v/v), filtered and degassed using 0.25µm membrane filter.

Standard solution

(25mg, 25mg and 15mg) of secnidazole, omeprazole and amoxicillin were weighed and dissolved in 20 ml of the mobile phase in three 25ml volumetric flasks, the solvent was completed to the mark.

General Procedures

Construction of calibration curves

Working solutions were prepared immediately before use to cover the concentration ranges from (200-600 µg.ml⁻¹) for secnidazole, omeprazole and (120-360 µg.ml⁻¹) for amoxicillin injected into the column and the chromatogram was performed and detected at wavelength 230 nm. A graph was plotted as concentration of each drug against response (peak area) and it was found to be linear for all drugs.

Pharmaceutical preparation

Ten tablets or capsules of each formulation were weighed and powdered. An accurately amounts of the powder equivalent to (25,25 and 15mg) of secnidazole, omeprazole and amoxicillin were...
dissolved in 15 ml of the mobile phase, filtered, washed and collected into 25 ml measuring flask and completed to volume with the mobile phase. Working solutions were prepared as in the above procedure and completed as previously mentioned under the general procedure.

Stress Degradation Study

The stress degradation study was carried out according to the ICH requirements (Q IA (R2) and QIB) include acid, alkali and H$_2$O$_2$.

Acid degradation

Solution for acid degradation study was prepared in 25 ml volumetric flask, 10 ml appropriate mixed dilutions of the standard stock solutions of omeprazole, secnidazole and amoxicillin, 5 ml of 1 M HCl were added. The solution was set aside at room temperature (25±2 °C) for not less than 1 hour and complete to 25 ml with mobile phase. A 20 µl of each mixture was injected into the column and the chromatogram was obtained no important change in peak area and shape of secnidazole but small degradate product of omeprazole and amoxicillin was found.

Alkali degradation

Solution for base degradation study was prepared in 25 ml volumetric flask, 10 ml appropriate mixed dilutions of the standard stock solutions of omeprazole, secnidazole and amoxicillin, 5 ml of 0.1 M NaOH were added. The solution was set aside at room temperature (25±2 °C) for not less than 1 hour and complete to 25 ml with mobile phase. A 20 µl of each mixture was injected into the column and the chromatogram was obtained no important change in peak area and shape of secnidazole, broad peak of omeprazole and appearance of other peak (degradate product) of amoxicillin was found.

Oxidation with H$_2$O$_2$

Solution for oxidation degradation study was prepared in 25 ml volumetric flask, 10 ml appropriate mixed dilutions of the standard stock solutions of omeprazole, secnidazole and amoxicillin, 3% H$_2$O$_2$ were added. The solution was set aside at room temperature (25±2 °C) for not less than 1 hour and complete to 25 ml with mobile phase. A 20 µl of each mixture was injected into the column and the chromatogram was obtained no important change in peak area and shape of secnidazole and omeprazole but small degradate product of amoxicillin.

RESULTS AND DISCUSSION

Optimization of chromatographic conditions

Chromatographic parameters including wavelength detection, mobile phase composition and proportions, pH and flow rate were carefully studied in order to recognize the most suitable chromatographic system. The choice was based on the best resolution in a reasonable time.

Detection wavelength

Spectroscopic analysis of the drugs showed that omeprazole, secnidazole and amoxicillin have maximum absorbance at 290 nm, 310 nm and 230 nm, respectively. Therefore, the chromatographic detection was performed at 230 nm using UV-Vis. detector.

Buffer pH

Choosing suitable mobile phase pH was an important factor. Where omeprazole decomposes in acidic medium. However, an analysis above pH 7.5 was avoided for the following reasons, broad peak of omeprazole and appearance of other peak (degradate product) of amoxicillin. After experimental study, buffer pH 7.5 was optimum one giving good baseline separation.

Several types of buffer (potassium dihydrogen phosphate, acetate and borate buffers) were examined. It was found that potassium dihydrogen phosphate buffer gave the best peak symmetry.

Mobile phase composition and proportions

Mixture of methanol, acetonitrile and potassium dihydrogen phosphate buffer (10: 50: 40 v/v) was tried. However, amoxicillin peak tailing was obtained and retention time was delayed for omeprazole and secnidazole. When acetonitrile was replaced with methanol at the same ratio (60: 40) methanol: buffer, amoxicillin and secnidazole peak tailing were obtained, peak asymmetry retention time was delayed of omeprazole. Therefore, mixture of acetonitrile: potassium dihydrogen phosphate buffer was used for separation. After experimental
trials, it was found that good separation was achieved upon using a mobile phase consisting of acetonitrile: potassium dihydrogen phosphate buffer (pH 7.5) (60: 40, v/v).

So, the optimum chromatographic performances were achieved using, isocratic mobile phase composed of acetonitrile: potassium dihydrogen phosphate buffer (pH 7.5) (60: 40, v/v) in, injection volume 20 µl, detection wavelength 230 nm and flow rate 1.5 ml/min.

Chromatographic Conditions for the proposed HPLC method are listed in Table No.1.

Typical chromatograms for the mixed drugs in their pure forms and pharmaceutical preparations are shown in Figure No.4, 5.

Finally the studies of stress conditions on the chosen drugs are shown in Figure No.6-8.

Method validation
The developed methods were validated according to international conference on harmonization guidelines ICH27.

Linearity and range
The calibration graphs obtained by plotting the values of the peak areas versus the drug concentrations (µg/ml) were found to be rectilinear over the concentration ranges cited in the Table No.2.

The calibration graph was described by the equation:

\[Y = a + bX \]

(Where \(Y\) = peak area, \(a\) = intercept, \(b\) = slope, \(X\) = concentration in µg/ml).

Correlation coefficient, intercept and slope for the calibration data are summarized in table (2).

Accuracy
The accuracy of the proposed method was checked by performing recovery experiments through direct method. The results are shown in Table No.3.

Precision
Intraday precision was evaluated by calculating standard deviation (SD) of three independent concentrations for the mixture of drugs. The SD values revealed the high precision of the method. For inter-day reproducibility, a series was run. The results are summarized in Table No.5.

The limit of detection (LOD) for the proposed HPLC method was calculated using the following equation:

\[\text{LOD} = 3.3S/K \]

The limit of quantification, LOQ is defined as:

\[\text{LOQ} = 10S/K \]

Where S is the standard deviation of the three replicate determination values under the same conditions as for the drug analysis and K is the slope of calibration graph.

According to these equations, the limits of detection and the limits of quantification were calculated and are listed in Table No.2.

Robustness
The robustness of the method was evaluated by making small changes in the flow rate, pH of mobile phase within a range of ± 0.05 of the optimized pH and mobile phase ratio keeping the other chromatographic conditions constant where the effect of the changes was studied on the percent recovery of drugs. The changes had a negligible influence on the results; data are summarized in Table No.6.

Analysis of pharmaceutical formulations
The validated HPLC method was applied for the simultaneous determination of secnidazole, omeprazole and amoxicillin in individual pharmaceutical mixtures. Results obtained were compared to those obtained by applying reference methods9,18,24, where Student’s t-test and F-test were performed for comparison. Results are shown in Table No.4. The calculated \(t\) and \(F\) values were less than tabulated values for the cited drugs which in turn indicate that there is no significant difference between proposed method and reference ones.
Table No.1: Chromatographic Conditions for the proposed HPLC method

<table>
<thead>
<tr>
<th>S.No</th>
<th>Parameters</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Column</td>
<td>ACE 5 C_{18} column (25 cm x 4.6 mm)</td>
</tr>
<tr>
<td>2</td>
<td>Mobile phase</td>
<td>Isocratic mobile phase of acetonitrile: potassium dihydrogen phosphate (60:40, v/v) adjusted to pH 7.5 using sodium hydroxide, filtered and degassed using 0.25μm membrane filter.</td>
</tr>
<tr>
<td>3</td>
<td>UV detection</td>
<td>230 nm</td>
</tr>
<tr>
<td>4</td>
<td>Flow rate</td>
<td>1.5 ml/min</td>
</tr>
<tr>
<td>5</td>
<td>Injected volume</td>
<td>20μl</td>
</tr>
<tr>
<td>6</td>
<td>Temperature</td>
<td>Ambient</td>
</tr>
<tr>
<td>7</td>
<td>Retention time</td>
<td>Amoxicillin: 1.533 min.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Secnidazole: 2.267 min.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Omeprazole: 3.217 min.</td>
</tr>
</tbody>
</table>

Table No.2: Results and characteristic parameters for the simultaneous determination of Omeprazole, Secnidazole and Amoxicillin by the proposed method

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Omeprazole</th>
<th>Secnidazole</th>
<th>Amoxicillin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration (µg/ml)</td>
<td>Conc. taken</td>
<td>Conc. found</td>
<td>% Recovery</td>
</tr>
<tr>
<td>200</td>
<td>198.34</td>
<td>99.17</td>
<td>99.84</td>
</tr>
<tr>
<td>300</td>
<td>300.79</td>
<td>100.26</td>
<td>100.77</td>
</tr>
<tr>
<td>400</td>
<td>400.48</td>
<td>100.12</td>
<td>100.23</td>
</tr>
<tr>
<td>500</td>
<td>503.29</td>
<td>100.66</td>
<td>100.12</td>
</tr>
<tr>
<td>600</td>
<td>597.10</td>
<td>99.52</td>
<td>99.75</td>
</tr>
<tr>
<td>Mean recovery*</td>
<td>-</td>
<td>99.95</td>
<td>-</td>
</tr>
<tr>
<td>±SD</td>
<td>-</td>
<td>0.5963</td>
<td>-</td>
</tr>
<tr>
<td>±RSD</td>
<td>-</td>
<td>0.5966</td>
<td>-</td>
</tr>
<tr>
<td>Regression Equation**</td>
<td>Slope (b)</td>
<td>11348.3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Intercept (a)</td>
<td>156180.8</td>
<td>-</td>
</tr>
<tr>
<td>LOD µg/ml</td>
<td>195.07</td>
<td>58.522</td>
<td>58.523</td>
</tr>
<tr>
<td>LOQ µg/ml</td>
<td>9998</td>
<td>-</td>
<td>9999</td>
</tr>
</tbody>
</table>

* Average of three independent procedures, **Y = a + bC where Y is peak area, C is the concentration of the drug in µg/ml

Available online: www.uptodateresearchpublication.com October - December 201
Table No.3: Application for the determination of Gastro Loc®, Fladazole® and Ipiamox®

<table>
<thead>
<tr>
<th>Items</th>
<th>Gastro Loc</th>
<th>Fladazole</th>
<th>Ipiamox</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc. taken µg/ml</td>
<td>Conc. found µg/ml</td>
<td>% Recovery</td>
</tr>
<tr>
<td>200</td>
<td>204.17</td>
<td>200</td>
<td>100.67</td>
</tr>
<tr>
<td>300</td>
<td>305.59</td>
<td>300</td>
<td>100.63</td>
</tr>
<tr>
<td>400</td>
<td>404.27</td>
<td>396.70</td>
<td>99.17</td>
</tr>
<tr>
<td>500</td>
<td>506.04</td>
<td>508.11</td>
<td>101.62</td>
</tr>
<tr>
<td>600</td>
<td>598.90</td>
<td>607.37</td>
<td>101.23</td>
</tr>
</tbody>
</table>

Mean*: 101.21 ± 0.888

N: 5

S.D.: 0.888

R.S.D.: 0.878

S.E.: 0.3973

*Mean of three different experiments.

Table No.4: Statistical analysis of results obtained by the proposed HPLC method applied on Gastro loc®, Fladazole® and Ipiamox® compared with the reference methods

<table>
<thead>
<tr>
<th>S.No</th>
<th>Statistics</th>
<th>Gastro Loc®</th>
<th>Fladazole®</th>
<th>Ipiamox®</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mean recovery* ± SD</td>
<td>100.80±0.505</td>
<td>101.21±0.888</td>
<td>100.67±0.929</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Variance</td>
<td>0.255</td>
<td>0.7892</td>
<td>1.025</td>
</tr>
<tr>
<td>4</td>
<td>t-test**</td>
<td>- 0.8975(2.306)</td>
<td>- 0.5797(2.306)</td>
<td>- 0.073(2.306)</td>
</tr>
<tr>
<td>5</td>
<td>F-test**</td>
<td>- 3.092(5.05)</td>
<td>- 1.898(5.05)</td>
<td>- 3.69(5.05)</td>
</tr>
</tbody>
</table>

*Average of three experiments. a and b are Theoretical Student t-values and F- ratio at p=0.05.

Table No.5: Results of the intraday and interday precision for the determination of Amoxicillin, Secnidazole and Omeprazole by HPLC method

<table>
<thead>
<tr>
<th>S.No</th>
<th>Item</th>
<th>Conc.µg/ml</th>
<th>Intraday Mean ± SD</th>
<th>RSD</th>
<th>Interday Mean ± SD</th>
<th>RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Intraday</td>
<td>Interday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Amoxicillin</td>
<td>120µg/ml</td>
<td>99.47±0.6985</td>
<td>0.7022</td>
<td>100.84±0.7235</td>
<td>0.7174</td>
</tr>
<tr>
<td></td>
<td></td>
<td>240 µg/ml</td>
<td>99.90±0.9820</td>
<td>0.9829</td>
<td>100.55±0.6816</td>
<td>0.6846</td>
</tr>
<tr>
<td>2</td>
<td>Secnidazole</td>
<td>200 µg/ml</td>
<td>100.06±1.663</td>
<td>1.662</td>
<td>99.98±1.8033</td>
<td>1.8053</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400µg/ml</td>
<td>99.96±1.052</td>
<td>1.053</td>
<td>100.11±0.4727</td>
<td>0.4722</td>
</tr>
<tr>
<td>3</td>
<td>Omeprazole</td>
<td>200µg/ml</td>
<td>99.99±0.6217</td>
<td>0.6218</td>
<td>100.03±0.6738</td>
<td>0.6736</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400 µg/ml</td>
<td>99.93±0.6352</td>
<td>0.6357</td>
<td>100.10±1.6128</td>
<td>1.6110</td>
</tr>
</tbody>
</table>

Available online: www.uptodateresearchpublication.com October - December 202
Table No.6: Results of the robustness for the determination of Amoxicillin, Secnidazole and Omeprazole by HPLC method

<table>
<thead>
<tr>
<th>S.No</th>
<th>Item</th>
<th>Omeprazole</th>
<th>Secnidazole</th>
<th>Amoxicillin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flow rate 1.6</td>
<td>99.86±0.961</td>
<td>101.6±0.982</td>
<td>100.42±0.575</td>
</tr>
<tr>
<td>2</td>
<td>Flow rate 1.4</td>
<td>101.49±0.82</td>
<td>100.12±0.55</td>
<td>99.95±0.712</td>
</tr>
<tr>
<td>3</td>
<td>Mobile Phase 59:41</td>
<td>101.2±1.037</td>
<td>100.9±0.19</td>
<td>98.95±1.83</td>
</tr>
<tr>
<td>4</td>
<td>Mobile Phase 61:39</td>
<td>100.5±1.14</td>
<td>99.69±1.63</td>
<td>101.06±0.735</td>
</tr>
</tbody>
</table>

Figure No.1: Structure of Secnidazole

Figure No.2: Structure of Omeprazole

Figure No.3: Structure of Amoxicillin Trihydrate
Figure No.4: HPLC chromatogram of authentic mixture of Omeprazole, Secnidazole (600 µg/ml⁻¹) and Amoxicillin (360 µg/ml⁻¹)

Figure No.5: HPLC chromatogram of mixture of Omeprazole, Secnidazole (600 µg/ml⁻¹) and Amoxicillin (360 µg/ml⁻¹) in pharmaceutical preparation

Figure No.6: HPLC chromatogram of authentic mixture of Amoxicillin, Secnidazole and Omeprazole in presence of their acid degradation products
CONCLUSION
An isocratic RP-HPLC method has been developed for the simultaneous estimation of mixture of secnidazole, omeprazole and amoxicillin. The developed method was validated and it was found to be simple, precise, accurate and sensitive. Excipients present in the tablets and capsules show no interference in the determination. The proposed method can be used in quality control laboratories for routine analysis of secnidazole, omeprazole and amoxicillin in their pure and in their pharmaceutical formulations.

ACKNOWLEDGEMENT
I am thankful to faculty of Pharmacy, Zagazig University, Zagazig, Egypt for providing facility to carry out the research work.

CONFLICT OF INTEREST
We declare that we have no conflict of interest.
BIBLIOGRAPHY

17. Darwish K M, Salama I, Mostafa S, El-Sadek M.
RP-HPLC pre-column derivatization for analysis
of omeprazole, tinidazole, doxycyclin and
clarithromycin, Journal of Chromatographic
Science, 51(6), 2013, 566-576.
doxycycline mixture in presence of omeprazole
and tinidazole degradation products,
International Journal of Current Pharmaceutical
Research, 6(3), 2014, 48-53.
19. Vikram Kate N. Ananthakrishnan. Treatment of
hecobacter pylori, India Journal of
21. Kemal Unal, Lmurat Palabiyik, Elif Karacan,
Feyyaz Onurturk. Spectrophotometric
determination amoxicillin in pharmaceutical
22. Hesham Salem, Gamal A. Saleh. Selective
spectrophotometric determination of phenolic β-
lactam antibiotics, Journal of Pharmaceutical
and Biomedical Analysis, 28(6), 2002, 1205-
1213.
F. Selective spectrofluorimetric determination of
phenolic beta-lactum antibiotics through the
formation of their coumarin derivatives, J Pharm
Development and validation of stability
18. Mohamed M. Baraka, Mohamed E. Elsadek,
Lobna M. Abdelaziz and Samar S. Elbermawi.
RP-HPLC method for the simultaneous
determination of omeprazole, tinidazole and
indicating HPLC method for simultaneous
estimation of amoxicillin and clavulanic acid in
injection, American Journal of Analytical
25. Kasnia V, Kumar M S, Mahadevan N.
Simultaneous estimation of amoxicillin,
tinidazole and omeprazole in microsphere
formulation by RP-HPLC, International Journal
of recent Advances in Pharmaceutical
Researches, 2(2), 2012, 78-83.
26. Rajan V. Rele and Rajesh N. Mali. Simultaneous
determination of amoxicillin trihydrate and
bromhexine hydrochloride in pharmaceutical
dosage by reverse phase high performance liquid
chromatography, Scholars Research Library Der
Pharma Chemica, 5(1), 2013, 273-278.
27. International Conference On Harmonization of
Technical Requirements for Registration of
Pharmaceuticals for Human Use, ICH
Harmonized Tripartite Guideline, Validation of
Analytical Procedures: Text and Methodology
Q2(R 1), Complementary Guideline on
Methodology dated 06 November 1996,