METHOD DEVELOPMENT AND VALIDATION OF SPECTROPHOTOMETRIC METHOD FOR THE ESTIMATION OF LINEZOLID IN PURE AND TABLET DOSAGE FORM

Sushma S*1 and Pushpa Latha E1

*1Department of Pharmaceutical Analysis and Quality Assurance, Creative Educational Society’s College of Pharmacy, Chinnatekur, Kurnool, Andhra Pradesh - 518218, India.

ABSTRACT
The present research work discusses the development of UV Spectroscopic method for the estimation of Linezolid. Simple, specific, accurate and cost effective spectroscopic method has been developed for the estimation of Linezolid in bulk as well as formulation. The optimum conditions for the analysis of the drug were established. The maximum wavelength (λ_{max}) was found to be 251nm. The validation was performed as per ICH guidelines for linearity, accuracy, precision, LOD and LOQ. The method shows high sensitivity with linearity in the range of 1-6 μg/ml and shows a linear relationship between the absorbance and concentration with coefficient of correlation 0.999. The regression of curve was $Y = 0.0563x + 0.0211$. The precision of method was found to be good. The percentage recovery was found to be 99.47 ± 0.33. The optimized showed good reproducibility and recovery with RSD < 2%. The proposed method will be suitable for analysis of Linezolid in bulk as well as pharmaceutical formulations in quality control purpose. It is thus concluded that the proposed method is new, simple, cost effective, safe, accurate, precise and environmental friendly.

KEYWORDS
Linezolid, UV Spectroscopic method, Sensitive, Validation and ICH guidelines.

INTRODUCTION
Linezolid (Figure No.1) is used an oxazolidinone antibiotic (anti-bacterial) which inhibits bacterial protein synthesis by acting at an early step and a site different from that of other Antimicrobial agents1. Chemically it N\{[(5S)-3-[3-fluoro-4-(morphilin-4-yl) phenyl]-2-oxo-1,3-oxozolidin-5yl] methyl\} acetamide2. It is available as white crystalline powder which is freely soluble in distilled water, ethanol, chloroform, methanol and DMSO3. Fewer methods have been reported for the quantitative determination of Linezolid, which includes UV4-8.
HPLC, Electrometric method, Chiral Chromatography, HPTLC, Microbiological assay, bioanalytical method using LC. Several methods have been reported in literature for the determination of Linezolid in the presence of other drugs which includes UV, HPLC, Fluorimetry. The aim of present work was to develop a simple, sensitive, specific spectrophotometric method for detection of Linezolid in bulk as well as pharmaceutical formulation.

MATERIALS AND METHODS

Equipment and reagents
A Labindia model 3000+ double beam UV-Visible Spectrophotometer with two matched cuvette cells of one cm light path were used for the measurement of absorbance. The Linezolid bulk drug was kindly gifted by Hetero Labs Pvt. Ltd. Hyderabad. The pharmaceutical dosage form was procured from market. Distilled water was used for the study.

Preparation of standard stock solution
Accurately weighed 10 mg of Linezolid was transferred into 10ml volumetric flask volume was made up to 10ml with distilled water to get a concentration of 1000µg/ml and filtered through the Whatman filter paper no.41.

Determination of λ max
From the stock solutions, 1.0ml of linezolid was transferred to 100 ml volumetric flask and the volume was adjusted to the mark with distilled water to get a concentration of 1000µg/ml and scanned in the UV range 200-400 nm (Figure No.2).

Construction of calibration curve
Calibration curve was plotted against concentration and absorbance, regression equation was computed. The results tabulated in the Table No.1 and Figure No.3.

Preparation of Sample solution
Twenty tablets were weighed, average weight determined and crushed into fine powder. An accurately weighed quantity of powder equivalent to 10mg of Linezolid was transferred into 10ml volumetric flask containing 30ml distilled Water, shaken manually for 10 min., volume was adjusted to mark with same solvent and filtered through Whatmann filter paper no.45. An appropriate aliquot was transferred to 10 ml volumetric flask, volume was adjusted to the mark and absorbance was recorded at 251 nm (Table No.2).

METHOD VALIDATION
The Proposed method was validated as per the ICH Q2 (R1) guidelines for linearity, accuracy, precision, LOD and LOQ (Table No.3).

Accuracy
Accuracy was carried out at 80 %, 100 % and 120 % of target concentration. From the amount found, percentage recovery was calculated (Table No.4).

Precision
Precision of the method was studied by carrying out intraday, interday analysis and expressed as percentage Relative Standard Deviation. For this purpose 1 (LQC), 4 (MQC) and 6µg/ml (HQC) solutions were prepared and the absorbance’s of the solutions were measured for six times within the same day and in different days at 251 nm against blank (Table No.5).

Limit of Detection (LOD) and Limit of Quantization (LOQ)
LOD and LOQ of the drug were calculated using the following equations according to International Conference on Harmonization (ICH) guidelines

$$LOD = 3.3 \times \frac{\sigma}{S}$$

$$LOQ = 10 \times \frac{\sigma}{S}$$

Where σ = the standard deviation of the response and S = the slope of the regression equation.

RESULTS AND DISCUSSION
The proposed method for determination of Linezolid in marketed formulation (tablet) showed Sandell’s sensitivity of 0.0121µg/cm²/0.001 absorbance units. Linear regression of absorbance on concentration gave the equation $y = 0.0563x + 0.0211$ with a regression co-efficient (R^2) of 0.999 (Figure No.3) and the linearity range was 1- 6µg/ml. The higher percentage recovery value (95-105%) indicates that there is no interference of the excipients present in the formulation. Thus the method is useful for the determination of Linezolid in bulk and pharmaceutical formulations.
Table No.1: Calibration of proposed method

<table>
<thead>
<tr>
<th>S.No</th>
<th>Conc. (mcg / ml)</th>
<th>Absorbance at 251nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.082</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.129</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.187</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.248</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.304</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.359</td>
</tr>
</tbody>
</table>

Table No.2: Assay of Linezolid formulation

<table>
<thead>
<tr>
<th>S.No</th>
<th>Formulation</th>
<th>Label claim (mg/tab)</th>
<th>Amount found (mg) (n=4) Mean ± SD</th>
<th>Assay</th>
<th>% RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lizomac</td>
<td>600mg</td>
<td>592.8 ± 0.00115</td>
<td>98.80%</td>
<td>1.402</td>
</tr>
</tbody>
</table>

Table No.3: Optimum conditions, Optical characteristics and Statistical data of the Regression equation in UV method

<table>
<thead>
<tr>
<th>S.No</th>
<th>Parameter</th>
<th>UV method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>λ_{max} (nm)</td>
<td>251</td>
</tr>
<tr>
<td>2</td>
<td>Beer’s law limits (mcg / ml)</td>
<td>1-6</td>
</tr>
<tr>
<td>3</td>
<td>Sandell’s sensitivity (mcg / cm²-0.001 absorbance units)</td>
<td>0.0121</td>
</tr>
<tr>
<td>4</td>
<td>Regression equation (Y^*)</td>
<td>$y = 0.0563x + 0.0211$</td>
</tr>
<tr>
<td>5</td>
<td>Slope (b)</td>
<td>0.0563</td>
</tr>
<tr>
<td>6</td>
<td>Intercept (a)</td>
<td>0.0211</td>
</tr>
<tr>
<td>7</td>
<td>Correlation coefficient(r^2)</td>
<td>0.999</td>
</tr>
<tr>
<td>8</td>
<td>% RSD**</td>
<td>< 2%</td>
</tr>
<tr>
<td>9</td>
<td>Limit of detection (mcg / ml)</td>
<td>0.603</td>
</tr>
<tr>
<td>10</td>
<td>Limit of quantitation (mcg / ml)</td>
<td>0.830</td>
</tr>
</tbody>
</table>

$Y=bX + a$ where X is the concentration of Linezolid in mcg/ml and Y is the absorbance at the respective λ_{max}.

**Average of six determinations.

Table No.4: Determination of Accuracy results for Linezolid at 251nm

<table>
<thead>
<tr>
<th>S.No</th>
<th>Brand name</th>
<th>Amount of sample (mcg/ml)</th>
<th>% of Spiked sample</th>
<th>Amount of drug added (mcg/ml)</th>
<th>Amount Recovered</th>
<th>% Recovery ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lizomac</td>
<td>2</td>
<td>80</td>
<td>1.6</td>
<td>3.508</td>
<td>97.44 ± 0.18</td>
</tr>
<tr>
<td>2</td>
<td>Lizomac</td>
<td>2</td>
<td>100</td>
<td>2</td>
<td>4.101</td>
<td>102.52 ±0.54</td>
</tr>
<tr>
<td>3</td>
<td>Lizomac</td>
<td>2</td>
<td>120</td>
<td>2.4</td>
<td>4.332</td>
<td>98.45 ± 0.27</td>
</tr>
</tbody>
</table>

**Average of six determinations.

Table No.5: Determination of Precision results for Linezolid at 251 nm

<table>
<thead>
<tr>
<th>S.No</th>
<th>Concentration mcg/ml</th>
<th>Inter-day Absorbance Mean ± SD**</th>
<th>% RSD</th>
<th>Intra-day Absorbance Mean ± SD**</th>
<th>% RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LQC (1mcg/ml)</td>
<td>0.084 ± 0.0015</td>
<td>1.817</td>
<td>0.082 ± 0.000577</td>
<td>0.704</td>
</tr>
<tr>
<td>2</td>
<td>MQC (4mcg/ml)</td>
<td>0.249 ± 0.001</td>
<td>0.401</td>
<td>0.248 ± 0.001154</td>
<td>0.465</td>
</tr>
<tr>
<td>3</td>
<td>HQC (6mcg/ml)</td>
<td>0.358 ± 0.0015</td>
<td>0.418</td>
<td>0.360 ± 0.000577</td>
<td>0.160</td>
</tr>
</tbody>
</table>

Available online: www.uptodateresearchpublication.com April - June
Figure No.1: Structure of Linezolid

Figure No.2: Calibration curve of Linezolid at 251nm

Figure No.3: Construction of calibration curve
CONCLUSION
A simple, sensitive, accurate and precise UV spectrophotometric method has been developed for quantitative determination of Linezolid in bulk and Pharmaceutical dosage form (tablet). The UV spectrum was scanned between 200 to 400 nm and 251 nm was selected as maximum wavelength for absorption. Beer’s law was obeyed in the concentration range of 1-6 µg/ml. % Recovery was calculated, was found to be 97.44 - 102.52 and the method was successfully applied to the pharmaceutical dosage form containing the Linezolid drug without any interference by the excipients. The method was fast and economical and it was also selective and sensitive for the desirable range. Results of the analysis were validated as per ICH guidelines and by recovery studies.

ACKNOWLEDGEMENT
We are highly thankful to Hetero Labs Pvt. Ltd. for providing the gift sample of Linezolid which made us for the fulfillment of this work.

CONFLICT OF INTEREST
We declare that we have no conflict of interest.

BIBLIOGRAPHY

Available online: www.uptodateresearchpublication.com April - June 87